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ABSTRACT

The question of when a square, linear operator is quasimonotone nondecreasing
with respect to a nonnegative cone was posed in 1974 for the application of vector
Lyapunov functions. Necessary conditions were given in 1980 based on the spectrum and
the first eigenvector. This dissertation gives necessary and sufficient conditions for the
case of the real spectrum when the first eigenvector is positive, and when the first
eigenvector is nonnegative it gives conditions based on the reducibility of the matrix. For
the complex spectrum, in the presence of a positive first eigenvector the problem is shown

to be equivalent to the irreducible nonnegative inverse eigenvalue problem.




vi



TABLE OF CONTENTS

L INTRODUCTION. ..ooooooooooooeeeeeeeeeeeessessoeceeeeeeesseeeeeseesseeeeseesseeeseesseeseesseseesesseereeess 1
. CONES AND NONNEGATIVE MATRICES............oooovrrreressssessesrcmmmeeeeeseesseesereees 5
A. CONES IN EUCLIDEAN SPACE..........ooooooorseeseeeseses e 5
B. NONNEGATIVE MATRICES. ......coooovereeeseseseseseeoeeeeseeeseessesesssesse s 9
IIl. CONE-VALUED VECTOR LYAPUNOV FUNCTIONS..........vvvvrrerererereeeresrseserne 13
A. DIFFERENTIAL EQUATIONS, INEQUALITIES, AND STABILITY..........13
B. CONE-VALUED VECTOR LYAPUNOV FUNCTIONS..........osrosseerererreee.. 30

C. THE QUASIMONOTONICITY OF LINEAR DIFFERENTIAL SYSTEMS...36

D. STABILITY THROUGH LINEAR COMPARISON SYSTEMS..................... 40
IV. THE QUASIMONOTONICITY OF A SQUARE, LINEAR OPERATOR WITH

RESPECT TO A NONNEGATIVE CONE: THE REAL SPECTRUM.................. 53

A. MATRICES WITH A POSITIVE FIRST EIGENVECTOR................... e 53

B. REDUCIBLE MATRICES WITH A NONNEGATIVE FIRST
EIGENVECTOR .......cooiiiiiieeeee ettt et st essae s e e ae e saae e 57

C. IRREDUCIBLE MATRICES WITH A NONNEGATIVE FIRST

EIGENVECTOR.........coiiiiiiiieirienitnenieseentete st e 62
V. THE QUASIMONOTONICITY OF A SQUARE, LINEAR OPERATOR WITH
RESPECT TO A NONNEGATIVE CONE: THE GENERAL SPECTRUM.......... 65
A. IRREDUCIBLE, ESSENTIALLY NONNEGATIVE MATRICES.................. 65
B. THE NONNEGATIVE INVERSE EIGENVALUE PROBLEM...................... 69
VI. FURTHER APPLICATIONS.........oooiii ettt 73
VII. CONCLUSIONS AND FUTURE RESEARCH..........ccccccoivmininiiiicceeicnene, 81
LIST OF REFERENCES.........o ittt ceitertteceee s et stessc e s e ae e s 85
INITIAL DISTRIBUTION LIST......coooiiiiiiee e 95

vii




viii



ACKNOWLDGMENT

I first want to thank my advisor, David Canright, for his patience, guidance, and

- careful review of my work during the conduct of this research. His exacting standards not
only influenced this document, but also will effect all of my future work. He deserves the
free time he will now have.

My committee not only helped me through my research and the preparation of this
dissertation, but they were invaluable in getting me through the entire program. For this I
owe a debt of gratitude to Chris Frenzen (Chairman), Rob Dell, Clyde Scandrett, and
Maury Weir.

I owe a special thanks to Don Fausett, who introduced me to this problem, who
got me started on my research, and who continued to help me through the entire process.

I received a lot of guidance from other faculty members, who all took the time to
offer suggestions, critique my ideas, and discuss applications. I want to thank Van
Henson from Lawrence Livermore National Laboratory; Bill Gragg, Wei Kang, Carlos
Department of Mathematics; and Marvin Marcus from the University of California at
Santa Barbara.

Finally, I received a lot of moral support and encouragement from my family, who
experienced every up and down with me for the last three years. For this I thank my
parents; my girls, Elaine and Elizabeth; and especially my wife, Kim.

While I received a lot of help and guidance in my research, I retain sole
responsibility for any errors this dissertation may contain.




I. INTRODUCTION

This dissertation addresses what appears to be a simple problem: “Given a real,
square matrix A, when does there exist a nonnegative matrix B such that B”AB has its
off-diagonal elements nonnegative?” Based on different bodies of literature, and on the
appﬁcatiom we could similarly ask when a square linear operator is quasimonotone
nondecreasing with respect to a cone in the nonnegative orthant, or when a real matrix is
essentially nonnegative under a nonnegative change of basis.

This question has its roots in the Perron-Frobenius theory of the early 1900s, and
as we develop our solution, we trace its history, as well as the history and current state of
some of its applications. We also discuss similar and related problems to demonstrate how
this problem fits into the scheme of applied mathematics.

We present a brief background on cones in Euclidean space and on the theory of
nonnegative matrices in Chapter Il. We use the following convention to present results.
Theorems (and proofs) from the original source have the author and date ‘aﬁer the
theorem number. If the proof comes from another source, we indicate that prior to
presenting the theorem. For well-known results, we either indicate the source or provide
our own proof. We indicate the completion of a theorem and proof (or just a theorem for
results presented without proof) with the O symbol.

Chapter ITI motivates this question as an unsolved problem from the theory of
cone-valued vector Lyapunov functions, which can determine stability in dynamical

systems. We also present some of our results concerning this application. This question




was first posed for the application of vector Lyapunov functions in 1974, and partial
answers were given for this setting in 1980 and 1995.

Chapters IV and V present our original solutions to this problem. The problem
has significantly different solutions depending on whether the spectrum of A is real or
general, and Chapter IV presents our solution for the real spectrum. In Section IV.A we
show the necessary condition that the first eigenvector x; of A (associated with the
greatest eigenvalue A,) be nonnegative, and the sufficient condition that x; be positive.

The case where x; is nonnegative but not strictly positive has different solutions
based on the reducibility of the matrix A. Section I'V.B addresses the reduced case, where
we show sufficient conditions when A, is a simple eigenvalue of A, and we have a
sufficient (but not necessary) condition when A, is not simple.

In the case where x; is nonnegative and A is irreducible, Section IV.C shows
that we can use x; to deflate the matrix A and reduce the problem to one of dimension
n-1. Here, we also give necessary and sufficient conditions for a cone to exist.

Chapter V presents our solution for the complex spectrum. We show that in the
presence of a positive first eigenvector, the problem can be reduced to the nonnegative
inverse eigenvalue problem, a classic unsolved problem from theoretical linear algebra.
We present the solution only in terms of irreducible quasimonotone matrices, and we show
why it is sufficient to consider such matrices.

Chapter VI presents other direct and related applications from control theory and
dynamics, as well as from other fields of applied mathematics, and we mention similar

problems which have been solved or discussed previously from these and other fields.



Chapter VII summarizes our results, to include the unsolved problems mentioned
above, and we suggest further research.

One attractive aspect of our solutions is they are constructive, and hence fairly
simple, although there is some numerical instability inherent in some constructions.
Particularly for applications where the existence of a matrix B is sufficient information for
the analyst, we present collections of useful necessary and sufficient conditions. We begin

with some background.







II. CONES AND NONNEGATIVE MATRICES

This chapter provides background for the main results. Specifically, we discuss
cones in Euclidean space and present results from the theory of nonnegative matrices. We

begin with a discussion of cones.

A.  CONES IN EUCLIDEAN SPACE.

The employment of cones as subsets of R" began in the 1930s, where along with
convex pblyhedra, they were soon found to be useful in the field of linear optimization and
in the study of linear inequalities (see, for example, Weyl, 1935; and Goldman and Tucker,
1956). Dual cones were first employed in 1941 by J. Dieudonné (see Lay, 1982),
although dual sets to convex sets had been used much earlier (see Helly, 1923).

The analysis of cones, convex polyhedra, and convex sets in general has become a
major field of study in its own right, which has its roots in Caratheodory (1907), and
which can be found, for examl;le, in Sandgren (1954), Karlin (1968), Rockafeller (1970),
Stoer and Witzgall (1970), Berman (1972), and Lay (1982). We need only the most basic
definitions and results from those fields, and we begin with some definitions.

If R" is Euclidean n-space with norm ||| and inner product {-,"), a subset
S cR" isconvexifand only if x,y € S implies ax+(1—~a)y € S forall a € [0,1]. A
set K is a cone if and only if AK c K for A > 0. A convex cone satisfies both
definitions, and we require that K= K, where K is the closure of K, so that our cones
are closed. (It is a result of Farkas (1901) that a set is a closed, convex cone if and only if

K=(K')', where K" is the dual of K, to be defined shortly.) A cone is pointed if and




only if K m (-K) = {0}, and solid if and only if K° is nonempty, where K° is the interior
of K. An equivalent notion (in Euclidean space) to solid is reproducing, where K is
reproducing if and only if K~ K =R". (It is a result of Krein and Rutman (1948) that a
cone is pointed if and only if its dual is solid.)

A convex cone K is polyhedral if and ouly if it is generated by finitely many
vectors, and if the number of independent vectors is equal to n, then K is simplicial. A
closed, pointed convex cone is called proper. The result that a proper cone is generated
by its extremals is a special case of the Krein-Milman Theorem. The only cones we
consider for our applications are proper, simplicial cones.

Since a proper, simplicial cone is generated by n independent extremal vectors b;,

we consider the nonsingular matrix B = [by, . . ., b,] € R"", and we denote the cone

n

generated by the columns of B as K(B). Clearly, K(B) = {x € R'lx= > ob;, ;> 0}.

i1
The cone we most frequently encounter is R, the nonnegative orthant, where
R =K(I) with I being the identity matrix in R™".

The cone K induces an order relation on R" by x % yey-xe€ K and
X<yeoy-xe K°. The dual, or adjoint, cone is K = {¢ € R"{$, x) =0V x € K},
which clearly satisfies the properties of a cone, and for a proper, simplicial cone,

(K') =K. Ifwe define K, as K\{0}, then x e K°<= (9, x)>0V ¢ € K, and

x € 0K (, x)=0 for some ¢ € K;, where IK is the boundary of K.



A continuous finction £ D < R" — R" is quasimonotone nondecreasing in x
relative to the cone K iffor x,y € D,y —x € 0K implies there existsa ¢ € K; such

that (¢, y—x)=0 and (¢, Ry) — fx)) 2 0. This definition, from Elsner (1974), is fairly
standard; however, for nonlinear functions some authors require x,y € K (see, for
example, Heikkild, 1983). For a linear function f{x) = Ax, A € R™, the quasimonotone
nondecreasing property reduces to: x € 0K implies there exists a ¢ € K| such that
{b,x)=0 and (¢, Ax) = 0.

An equivalent definition is £ R — R" is quasimonotone nondecreasing if and only
if fi(x) isnondecreasingin x; forall i,j=1,..., n,i=#]j, so the following lemma
characterizes quasimonotone nondecreasing linear operators. This result appears as an
example in Lakshmikantham and Leela (1977b).

Lemma A.l1. A linear operator A € R™" is quasimonotone nondecreasing
relative to the nonnegative orthant if a; >0 forall i#j.

Proof. We prove this for n =2. A similar argument works for n> 2. Let
K=R2 = {(x;, X%)[x1 > 0, X, > 0}. Then K =X, since (¢, x)>0 implies

$1x; + ¢2x2 = 0 for all x;, X, > 0, which in turn implies ¢y, ¢2 = 0. If f{x) = Ax, where

a a . . . .
A= [ "2 js quasimonotone nondecreasing relative to K, then for x;=0 or
a4 Aap

X, =0, there existsa ¢ € K| such that (¢, x)=0 and {$, Ax)>0. Now
(d, x)=¢:1x;1 + ¢2x2 =0 and {$, Ax) = ¢1(anxs + a12X%z) + P2(a21X; + amXp) 2 0. If x, =0,

Xo # 0, then (bzXz =0 so ¢2 = (., This implies, since ¢1 > 0, that ¢1a12xz > 0, SO app >0.




Similarly, a;; 2 0, so the linear functions which are quasimonotone nondecreasing relative
to K are precisely those matrices with nonnegative off-diagonal entries. O

We use the following well-known results.

Lemma A.2. Given a nonsingular matrix B € R" and the cone K(B), then

K((B™)) =K(B)".

n n

Proof. Let x € K(B™)") and y € K(B) sothat x= ) oid; and y= > B,

i=1 i=1

o n

with a;, Bi > 0. Then <X, y) = Zn: Z Sij(liﬁj = Z aiB; 2 0, SO K((B—I)T) (- K(B)‘

i=] j=1 i=1

Similarly, let x ¢ K((B™')"). Since the ¢; are independent, x = Z Yidi, but there

i=1

exists at least one y; < 0. For y=b; € K(B), it follows that (x, y)=v;<0, so x ¢ K(B)'.
Hence, K(B)' < K((B™")"), proving the lemma. O

Lemma A.3. Given a nonsingular matrix B € R" and the cone K(B), then
K(B) <R ifand only if K(B“l) 2R}

Proof. Let K(B)c R} andlet a € R} be arbitrary. Then Ba=x € R since
X is a positive linear combination of the zg;enerators of K(B). Because B is invertible, it
follows that a=B7'x. As a € R" is arbitrary and expressible as a nonnegative Linear

combination of the colummns of B™', we conclude that K(B) o R".

Conversely, assume K(B™') 2 R” andlet a € R®. Then there exists an



x € R} such that B'x=a, so x=Ba. Then B is nonnegative, otherwise it has some
column b; which is not nonnegative, and letting a = [0y, . . ., 053, 1j, O, . . ., 0,]" shows
x ¢ R%, which is a contradiction. This proves the lemma. [

Since K(B) c R? implies B is a nonnegative matrix, and since B” is also
nonnegative, then K((B™)") 2 R® as well. This gives a nice characterization of the
inverses of nonnegative matrices. |

When we say that a matrix A € R™ (or a linear opérator A:R">R"is
quasimonotone nondecreasing with respect to a cone K(B), we mean that C = B'AB is
quasimonotone nondecreasing (with respect to R ) even though A may not be. In

Chapter III we show this result as a theorem of Heikkili.
Since quasimonotonicity is related to nonnegative matrices, we next present some

background on nonnegative matrices.

B. NONNEGATIVE MATRICES

The study of nonnegative matrices began with Perron’s (1907) presentétion ofa
theory of positive matrices. Frobenius (1908, 1909, 1912) immediately extended this
theory to nonnegative matrices, and the general theory has carried their names ever since.
Here we present only their basic results required for our application.

A positive matrix A € R™" has a; >0 fori,j=1,.. ., n. A nonnegative matrix
has a;>0. Amatrix A is essentially nonnegative (positive) if and only if a; 20 (> 0)

for all i#j. The following lemma justifies the term “essentially” nonnegative.




Lemma B.1. If a matrix A € R™ is essentially nonnegative, then there exists a
number r>0 suchthat A =A +1l is nonnegative. Furthermore, the spectrum
G(A ) =0(A) + 1, and the eigenvectors of A and A are equal.

Proof. The first statement is obvious. Let Ax =Ax. Then A x = (A+1Dx =
Ax +1Ix = Ax + rx = (A + 1)x, completing the proof. O

Hence, we can shift the diagonal (and the spectrum) of an essentially nonnegative
(positive) matrix to make it nonnegative (positive).

A matrix A is reducible if it is permutation similar to a matrix

All A12

0 A } where A;; and Ay, are square (and of positive dimension).
22

vl

Otherwise, A is irreducible. A positive matrix is a special case of a nonnegative,
irreducible matrix. The following theorem summarizes the basic results we need from the
theory of nonnegative matrices.

Theorem B.2. (Perron, 1907; Frobenius, 1912). A positive matrix A >0 has an
eigenvalue equal to the spectral radius of A. Associated with this eigenvalue is a positive
eigenvector. Furthermore, A has no other nonnegative eigenvectors. The same is true
for a nonnegative, irreducible matrix A > 0.

A nonnegative matrix A >0 has a (real) eigenvalue equal to the spectral radius of
A. Associated with this eigenvalue is a nonnegative eigenvector. [

For a proof of the above results see, for example, Gantmacher (1959), Varga
(1962), or Horn and Johnson (1991). Since the transpose of a matrix with any of the

above properties retains that particular property, the same conclusion can be made about

10



the left eigenvectors of A. Note that when comparing two matrices asin A > B, or two
vectors as in x >y, we refer to component-wise majorization.

From Lemma B.1 and Theorem B.2 it follows that an essentially positive matrix
has a real eigenvalue with greatest real part, with positive left and right eigenvectors
associated with this eigenvalue, and no other nonnegative eigenvectors. Similar
conclusions follow for essentially nonnegative and irreducible essentially nonnegative
matrices.

If a linear operator A: R"—> R" is quasimonotone nondecreasing, then the matrix
A € R™ is essentially nonnegative. Therefore, if we ask when a square, linear operator

A on R" is quasimonotone nondecreasing with respect to a cone in R}, -we are asking

the equivalent question of when the matrix A € R™ is essentially nonnegative under a
nonnegative change of basis. The next chapter introduces the motivating application, the

theory of cone-valued vector Lyapunov functions.

11
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HI. CONE-VALUED VECTOR LYAPUNOYV FUNCTIONS

The motivating problem for determining the quasimonotonicity of a square matrix
with respect to a nonnegative cone in R" comes from stability theory in differential
equations. Specifically, we seek such a cone when using vector Lyapunov functions to
determine the stability of an equilibrium in a dynamical system. This chapter presents this
problem for linear comparison systems.

We begin with a brief introduction to the theory of differential equations and
stability. In order to develop the technique of vector Lyapunov functions, we also require
results from the theory of differential inequalities. We present only the results from these
fields needed to prove the major theorems of vectbr Lyapunov functions. In the case of
well-known results, or those which will not be used directly, we present the results

without proof.

Al DIFFERENTIAL EQUATIONS , INEQUALITIES, AND STABILITY

We consider a system of first-order differential equations

x' = f{t, x), x(to) = Xo, (A1)

where x' =dx/dt,x € R™, £ Ix D — R™ where IcR and D cR" are open sets
containing t, and X, respectively, and f has ceﬂaﬁ continuity requirements. A
solution x(t) to equation A.1 is a differentiable function x: Jc R — R™ satisfying the
differential equation dx/dt = ft, x) and the initial condition x(to) = xo. We also consider
the autonomous system

X' = fx), X(to) = Xo, A2)

13



where the vector field is independent of time.

Picard (1890) and Lindelof (1894) showed that if ft, x) is continuous on a closed
set containing (to, Xo), and is uniformly Lipschitz continuous with respect to x on this
set, then equation A.1 has a unique solution x(t) on some set [to, to + o] for o > 0.
Peano (1890) showed that without the assumption of Lipschitz continuity, then equation
A.1 has at least one solution x(t) on t € [to, to + a]. Furthermore, a solution on an open
subset of R™' containing (to, Xo) can be extended to the boundary of that set. Proofs of
these results can be found, for example, in Hartman (1982), and these existence and
uniqueness results are the basis for the theory of differential equations.

To prove stability results about equilibria in equation A.1, we also need results
from the theory of differential inequalities. We extend the concept of the standard
derivative used in equation A.1 to the Dini derivative, defined as

Dx(t) = hﬁntx_lf (1/h)[x(t + h) — x(t)]. This is one of four Dini derivatives, and we define

the others as needed. We begin with scalar inequalities (m = 1 in equation A.1). The
following results are found, for example, in Lakshmikantham and Leela (1969a) or Walter
(1970).

Theorem A.1. Let E be an open (t, x)-setin R and fe CfE, R]. Assume
that v, w € CJ[[to, to + a), R] for some a >0, and (t, v(t)), (t, w(t)) € E for
t € [to, to + a). If v(to) <w (to) and if D_v(t) < f{t, v(t)) and D_w(t) > f{t, w(t)) for
t € (to, to + ), then for t € [to, to + &), v(t) <w(t). O

For the scalar differential equation A.1 (m = 1), we define the maximal solution on

[to, to + @) as the unique 1(t) such that for every solution x(t) defined on [to, to + ),

14



x(t) <x(t) for t € [to, to + o). The minimal solution is defined analogously, and the
following results presented for maximal solutions are also valid for minimal solutions, with
appropriate changes. Under the hypothesis of Peano’s theorem, a maximal solution exists
on the interval [to, to + o], and as before, if one exists on an open set, it can also be -
extended to the boundary of that set.

It is useful when employing vector Lyapunov functions to compare a solution to a
maximal solution over an intérval. The following comparison theorem is basic to this idea.

Theorem A.2. Let f e C[E, R], where E is an open (t, x)-set in R?, and let
[to, to + &) be the largest interval in which the maximal solution 1(t) of equation A.1
exists. Let p € C[(to, to+ ), R], (t, p(t)) € E for t € [to, to + a), p(to) < Xo, and for a
fixed Dini derivative, Dp(t) < ft, p(t)) on t € [to, to + o) except on possibly a countable
subset of this interval. Then for t € [to, to + @), p(t) <1x(t). O

The question of the existence of a maximal solution for a system of differential
inequalities was solved by Wazewski (1950). He extended the above result to the case
m > 1 in equation A.1, and showed that a sufficient condition for a maximal solution to
exist to equation A.1 is that fi(x) be nondecreasing in x; for each t € [to, to + @], a
property which we defined in Chapter II as quasimonotone nondecreasing. This property
was first recognized as being important to dif%erential inequalities by Miiller (1926) (see
Walter, 1970). There are analogous definitions for increasing, decreasing, etc., as well as
for mixed quasimonotone properties.

Burton and Whyburn (1952) used the mixed quasimonotone property to prove the

existence of what are known as minimax solutions to differential equations. These are

15




solutions which, for example, are minimal in the first k components and maximal in the
last m —k components. The existence of minimax solutions leads to a family of
comparison theorems for differential inequalities which can be used to prove results about
stability of equilibria using vector Lyapunov functions. These include results about
stability, instability, and conditional stability. We present only the comparison theorem for
stability, since we use stability for the motivating example of cone-valued vector
Lyapunov functions.

Theorem A.3. Let E be an open (t, x)-set in R™, with f e C[E, R™).
Suppose that f is quasimonotone nondecreasing in x, and let {to, to + a) be the largest
interval of existence of the maximal solution r(t) of équation A.l. Let
p € C[[to, to + &), R™], (t, p(t)) € E for t € [to, to + &), and on this interval, for the Dini
dertvative, D_p(t) < f{t, p(t)). Then p(to) < xo implies p(t) < 1(t) on this interval. O

This theorem applies for any Dini Derivative. The proof of this result, along with
all the above results on differential inequalities, are in Lakshmikantham and Leela (1969a).

We now present some basic definitions and concepts from stability theory which
allow us to develop the technique of vector Lyapunov functions in its most simple setting.

An equilibrium solution to equation A.1 is a point & such that ft, £) =0 for all
t. Equation A.1 admits the trivial solution & =0 if ft, 0)=0 for allt, and we frequently
use this as our equilibrium as we can generally send an equilibrium point to the trivial
solution via a change of coordinates.

We wish to determine the stability of the equilibria of equation A.1, and we begin

with some basic definitions of stability. The trivial solution of equation A.1 is stable if for

16



every neighborhood U, of the origin and every t, >0, tilére is a neighborhood U, of'the
origin such that x, € U, implies x(t) € U; for all t >t,, where x(t) is a solution
satisfying x(to) = xo. The trivial solution is asymptotically stable if it is stable and there
exists a neighborhood Ujs of the origin such that x, € Us implies that

x(t) >0 as t > oo,

We may express these definitions in terms of norms as follows. The trivial solution
is stable if the solution x(t) with x(to) =X, is such that for every € >0, t, > 0, there
exists a 8> 0 such that ||xo|| <0 implies ||x(t)|| <& for all t>1, Similarly, the trivial
solution is asymptotically stable if there existsa & > 0 such that |x|| <& implies that
x(t) > 0 as t — oo.

The trivial solution in a linear system (when ft, x) in equation A.1 is a linear
function of x, ie., f{t, X) = A(x) where A € R™™) is asymptotically stable when the
eigenvalues of the matrix A all have negative real part for t >t,. In this case we refer to
the origin as a sink. In a noniinear system, if the eigenvalues of the linearized system in a
neighborhood of the equilibrium all have negative real part, then that equilibrium is a sink.

If the origin is a sink in a linear system, then for all solutions x(t), |[x(t)|| 'is a
strictly decreasing function of t, where ||| is the Euclidean norm. Similarly, it is a well-
known result (see, e.g., Hirsch and Smale, 1974; or Amold, 1989) that when the origin is
asymptotically stable ‘in a nonlinear system, there exists some norm such that ||x(t)|| is a
decreasing function of t for all solutions x(t) starting sufficiently near the origin.

These basic definitions of stability have numerous refinements. The two major

classes of stability definitions are Lyapunov and Poisson, and among the logical statements
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allowed in the definitions are 17,017,969 possibie types of stability (see Bushaw, 1969).
Many of these conditions are meaningless, and Massera (1949, 1956) discusses those
which are most often studied in terms of Lyapunov functions. Habets and Peiffer (1973)
extend these to a classification which encompasses all possible types of stability.

The above definitions of stability can be generalized for nonautonomous systems
(for example, when & depends on to) and they can be extended to conditional stability
(instability) definitions for stable (unstable) manifolds through the point (to, 0). Thereis a
well-developed theory of vector Lyapunov functions for conditional stability which uses
the minimax solutions of Burton and Whybum, but we discuss only the most basic case.
Furthermore, these stability results are local, and we do not present the conditions under
which they are global.

Thé definitions of stability and asymptotic stability used above rely on the norm of
a solution being either bounded in any neighborhood of the trivial solution, or decreasing
uniformly as t increases. Particularly for nonlinear systems, these conditions may be
difficult to verify. Lyapunov recognized this, and in his 1892 dissertation he suggested
that a function other than a norm could be used to determine stability (Lyapunov, 1907).
Of course we now refer to such functions as Lyapunov functions, and while they are
frequently difficult to find, they offer another powerful tool for classifying equilibria.

Before fntroducing Lyapunov functions, we define the derivative of a function
along a trajectory, in this case where the trajectory is a solution to the initial value
problem. For a solution x(t) to equation A.1 and a real-valued function V(t, x), we

define (using the terminology of Wiggins, 1996) the orbital derivative of V along x as
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\./' (t, x) = Limsup (I/h)[V(t + h, x + hfit, x)) — V(t, x)]. We now present a version of

bs0*
Lyapunov’s theorem from Hirsch and Smale (1974) for autonomous systems. A function
V satisfying the hypothesis of the theorem is called a Lyapunov function.

Theorem A.4. (Lyapunov, 1907). Let the autonomous system (equatidn A2)
x'(t) = f{x) admit the trivial solution f0)=0. Let V(x) be a continuous function defined
on a neighborhood U ofthe origin such that 0 e Uc D. Let V be diﬂ‘érentiable on
U \{0}, with

V(0)=0, and V(x)>0 if x#0. ~(A.3)

Then

\./ <0 on U\{0} (A4)

implies the origin is stable. Furthermore,

.V <0 on U\{0} (A.5)

implies the origin is asymptotically stable.

Proof. Let U be any neighborhood of the origin, and choose & such that
Bs(0) < U, where B5(0)is a 3-ball about the origin. Let o be the minimum value of V
on the boundary of B;(0), with o > 0 by equation A.3. Let U; = {x € Bs(0)|V(x) < at}.
Then no solution starting in U; can meet the boundary of Bs(0) since V is
nonincreasing by equation A.4. Therefore, the origin is stable.

If equation A.5 holds as well then V is strictly decreasing on orbits in U\{0}.
Let x‘(t) start in U;\{0} and suppose x(t,) = zo € Bs(0) for t, —> co. (By the

compactness of Bs(0) such a sequence exists.) We now show that z, = 0. By the
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continuity of V and equation A.5, V(x(t,)) = V(z) and V(x(t)) > V(z,) forall t>0. If
2o # 0, let z(t) be a solution starting at z,. For any s> 0, V(z(s)) < V(z), so for y(s)
starting sufficiently near zy, V(y(s)) < V(z,). If we let y(0)=x(t,) for sufficiently large
n, then V(x(t, + s)) < V(z), which is a contradiction. Therefore, z, =0 is the only
possible limit point of {x(t)|t > 0}, and such a limit exists by the compactness of Bs(0).
This proves the theorem. O

While Lyapunov functions provide a useful technique for classifying equilibria,
there is no known algorithm for finding them. In mechanical systems or electrical circuits,
potential or total energy is frequently a candidate, but in general no technique works
uniformly. Even after 100 years, finding a Lyapunov function is still more of an art than a
science. The following example is from Hirsch and Smale (1974).

Example A.5. Consider the system

x'(t) =2yz -2y
y(®)=-xz+x
Z(t)=-2".

The origin is clearly an equilibrium, but if we linearize the system near the origin via the

0 -2 0
Jacobian matrix then Jjo=|1 0 0}, which has eigenvalues 0 and +2i We are
0 0 O

unable to classify the origin via linearization, so we seek a Lyapunov function of the form

V(x, y, 2) = ax’ + by’ + cz*. Then

20



V= 2(axx’ + byy' + czz') = 2[2axy(z — 1) — bxy(z -1) - cz']. Since we want V< 0,

letting c=1 and 2a="b gives V =-7'<0,s0 V=x*+2y*+ 7 is a Lyapunov

function, and the origin is stable. However, the Lyapunov function is not strict since

\./ =0 on the xy-plane, and we cannot determine (with this choice of V) if the origin is
asymptotically stable. O

While no known algorithm exists to find Lyapunov functions, they have proven
very useful over the past one hundred years in determining the stability of equilibria. See,
for example, Armnold (1989), Bailey (1966), Bhatia and Szegd (1970), La Salle and
Lefschetz (1961), Lehnigk (1966), and Yoshizawa (1966).

In 1962, Bellman recognized that the requirement that a Lyapunov function be
real-valued was too restrictive, and he proposed that a vector-valued function might
provide more flexibility. He presented his results for square, linear systems and special
cases of nonlinear systems. The following lemma is a special case of Theorem A.3 for
linear systems, but we present it in its entirety as it provides necessary and sufficient
conditions for the solution of a differential equation to be majorized by a solution of a
differential inequality. In this lemma, A = [a;] € R™™. The iemma is from Beckenbach
and Bellman (1965). |

Lemma A.6. Let the system of djﬁ'eréntial equations

dx/dt = Ax, x(0)=xo
have a solution x(t). Let y(t) satisfy the differential inequality dy/dt = Ay, y(0) = xo.

Then y(t) > x(t) for t>0 ifand onlyif a5 >0 for i#}j.
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Proof. The system dy/dt = Ax + g(t), y(0) = X, has a solution of the form

t
y(t) = xoe™ + I "¢ 9g(s) ds, so we need to know when the elements of e are
0

nonnegative fort>0. Since ¢ =1+ At+ A%%/2! + A’*/31 + . ., for small positive t
e™ ~ I+ At sothat y(t) > x(t) implies a; > 0.

Conversely, assume a;; > 0 (the case a;; > 0 follows via a limiting procedure) and
let e*=(e*™". Forafixed t, e®™ =1+ A(t/N)+ AXt/N)%/2! + . . . is positive (in the
sense that all elements are positive for N sufficiently large). Since the product of positive
matrices is positive, ¢* is positive if a; > 0 for i=j. This proves the lemma. O

The condition that a; >0 for i#j is precisely the condition of f{x) = Ax being
quasimonotone nondecreasing in Theorem A.3 for a linear function. Also, since a linear
function is uniformly Lipschitz continuous, Picard’s theorem applies and the maximal and
minimal solution are the unique solution x(t) = xoe™.

We now state a stability theorem for vector Lyapunov functions, where we
determine the stability of the trivial equilibrium solution to equation A.1.

Theorem A.7. (Lakshmikantham, 1965). Let g € C[R: xR}, R"], g(t, 0)=0
for :«ﬂl t, let g(t,u) be quasimonotone nondecreasing in u for each t € R+, and let’

u’ (t) = g(t, u), u(ty) =uy > 0. (A.6)
Let Ve C[R+xD,R1] and V(t, x) be locally Lipschitz in x, with z Vi(t,x) > 0 as
i=]

||x|]| = O for each t; and let f e C[R.x D, R"], f{t, 0) =0, and for (t, x) € R: x D,

V1, %) < g(t, V(t, X))
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Then the stability of the trivial solution u= 0 of equation A.6 implies the stability of the
trivial solution x =0 of equation A.1. O
In the more general theorem of Lakshmikantham (1965), various types of stability
and conditional stability are proven as well. Instead of presenting the proof here, we
present instead an example from Lakshmikantham (1974) that demonstrates the usefulness
of a vector Lyapunov function over that of a scalar Lyapunov function.
Example A.8. Consider the system '
dx/dt = e7'x + ysint — (X* + xy*)sin’t, (A.72)
dy/dt = xsint + ¢y — (x’y + y’)sin’t. (A.7b)
We would like to determine the stability of the trivial solution to this systém, SO we

attempt to find a scalar Lyapunov function, trying V(x, y) = x>+ y%. The best bound we

can achieve with this choice of V is V < 2(e™ +|sint|)V. Clearly the trivial solution of
du/dt = 2(e™ + |sint|)u is not stable, so we cannot conclide anything about the stability of

the trivial solution of equation A.7 with this particular choice of scalar Lyapunov function.

V. 2 '
However, if we choose V(x,y)= |: 1% Y)] =(1/2) [(x ) 2] as a vector
V2 (xa y) (x - Y)

Lyapunov function, then V< 2(e™ + sint)Vy, and V. < 2(e™ - sint)V. Since the trivial
solution u=0, w=0 to the system

du/dt = 2(e™ + sint)u

dw/dt = 2(e™ — sint)w

is clearly stable, the trivial solution x =0,y =0 to the system A.7 is also stable. U
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While we used the quantity Z Vi(t, x) as a measure, we could have used some

i=1

other measure such as max Vi(t, x) or Q(Vi(t, x), . . ., Vi(t, X)) where Q: R® — R.

and Q(u) is monotone nondecreasing in u.

Vector Lyapunov functions offer a lot of flexibility when they can be found, but
their true versatility is apparent in the case of conditional stability; i.e., when the stable
manifold of the equilibrium has dimension less than m. Here we present the most basic
results of this theory in terms of conditional stability, which are from Lakshmikantham
(1965). For completeness we review some of the terminology.

We wish to determine the stability of the (generally trivial) equilibrium solution to
equation A.1,

X'(t) = f{t, x), x(to) = X0, toc =0, (A1)
where x € R" and f{t, x) is defined and continuous in R. x R™. The trivial solution
x =0, where f{t, 0)=0 for all t >0, is conditionally equistable (where & in our
definition of stability depends on & and to) if and only if there exists a manifold M,
through the origin of dimension (m — k) such that for each € > 0 and each to> 0 there
exists a positive function 3 = 8(to, €) that is continuous in t, for each &, where ||x(to)|| <
O and x(to) € My imply |[x(t)|] <& forall t>t,.

We consider the comparison system

r(t)=gt, 1), r(te)) =10>0 (A.8)
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where g(t, ) is quasimonotone nondecreasing in r € R". When g has this property, the
solution 1(t; to, 1o) is maximal in the sense of component-wise majorization. We consider
solutions of the form
ri(t;to, 5)=0 (i=1,2,...,k) (A.9a)
ri(t; to, o) >0 (i=k+1,...,n) (A.9)
where m —k corresponds to the dimension of the manifold M.
The comparison system A.8 1s equistable (where & in our definition of stability

depends on € and to) if and only if for all € > 0, to > 0, there exists a positive function

& = (o, €), continuous in t, for each ¢, such that Z 1, <3 implies

- =k

n

Z 1i(t; to, To) <& for t>t,. Other stability and conditional stability properties are

i=1
formulated similarly.
The vector Lyapunov function V(t, x) € C[R: x R™, R ] is locally Lipschitz
continuous in x, and its orbital derivative along the trajectories x(t) of equation A.1

satisfies
V (t, %) < g(t, V1, X)) < (A.10)
where x(t) is any solution such that V(to, Xo) < 1o. By Theorem A.3 this ensures that
V(t, x(t)) < 1(t; to, 1o) for t=to.
The stable manifold of the origin, M-y, is defined by the set of points for which

- Vi(t,x)=0 for i=1,2,.. ,k<m (A.11)
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The bound for the measure, b(r) is a continuous function, nondecreasing in r,

such that

b(r) >0 for r>0, and b(||x||) < Zn: Vi(t, x). (A.12)

i=]
We might also have the bound satisfy b(r) - o as r — oo, which is required for certain
types of stability.
While we have used the component-wise sum of the Lyapunov finction as the
measure, there are several equivalent choices we could have selected. In terms of this

measure, we may require, for example,

n

Z Vi(t, x) > 0 as [|x|| > 0 for each t>0. (A.13)

i=1
We now state the theorem on vector Lyapunov functions and conditional stability.
Theorem A.9. (Lakshmikantham, 1965). Let assumptions A.10 through A.13
hold. If the solution A.9 to equation A.8 is conditionally equistable, then so is the
equilibrium solution of equation A.1

Proof. Let € > 0. If ||x|| = ¢, then from assumption A.12, we have
be)< D Vi, x). ' (A.14)
i=1

If the stability property holds, given b(g) > 0 and t, > 0, there exists a positive function

& = d(to, €), continuous in t, for each g, such that

> 1i(t; to, o) <b(e) for t2t,, (A.15)

i=1
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n

provided Z 1, <38. Let x(t) be any solution of equation A.1. Then it follows from

i=k+1

assumption A.10 that
an Vi(t, x() < Z 1i(t; to, To) for 21t - (A16)
i=1 i=1
whenever
g Vi(to, x(to)) < 2:1: T, - (A.17)

Now choose r, (i=1,2,...,n) to satisfy

r, =0 for i= 1,2,...,k and (A.18)

n

> 1, <8 (A.19)

i=k+1
By equation A.17 and since Vi(t,x)>0 for i=1,2, ..., n, equation A.18 implies that
X(to) € M(my) because of assumption A.11. From the monotonic property of b(r), |

assumption A.12, and equations A.17 and A.19, we deduce that |[x(to)|| < b'(8) =8,.

By assumption A.13, there exists a 0, = 8x(to, 8) such that sup Z Vi(to, x(to)) < 0.
be(to)ls8, =1

Let &; =min{8,, 5,}. It then follows from the choices of 1, and &; that x(to) € Mqu

and ||x(to)|| < 8; implies every solution x(t) satisfies equation A.16. Suppose, if possible,
that a solution x(t) of equation A.1 satisfying that x(to) € M1y and |{x(to)|| < 83 is such

that ||x(7)|| =€ for some T >t,. Then from assumption A.12 and equations A.14, A.15,

and A. 16 follows the contradiction b(g) < Z Vi(t, x(1)) < Z 1(T; to, To) < b(€),

i=1 i=1
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which proves the theorem. O

Vector Lyapunov functions can also be used to determine certain boundedness
properties of solutions of equation A.1, and boundedness theorems analogous to the
above theorems for stability are given in Lakshmikantham (1965). We now give an
example from Lakshmikantham (1965) of the usefulness of a vector Lyapunov function in
determining the conditional stability of an equilibrim.

Example A.10. Consider the system of differeptial equations

dx/dt = (1 + cos(t))x + (1 — cos(t))y + (cos(t) — 1)z

dy/dt=(1-e")x+(1+eNy+(e'- 1)z

dz/dt = (cos(t) — e")x + (e™ — cos(t))y + (™ + cos(t))z.
We select as the Lyapunov function

Vl (t7 X,Yaz) (X+y - 2)2
V(t: XY, Z) = Vz (t> X,Y, Z) = (X -yt 2)2
V3 (ta x: Y, Z) (—X +y + Z)2

3
Since . Vi=x*+y*+2°+(x—y)’ + (v — 2)* + (z - x)’, we may use as the positive,

i=1

monotone function b(x, y, z) the square of the Euclidean norm, since

3
b(x,y,z)=xX"+y +2° < Z Vi(t, x, y, z), so condition A.12 is satisfied. Since

i=1
Vi, %, y, 2) = 2(x + y — Z)(dx/dt + dy/dt — dz/dt) = 4(x + y — 2)°
Vilt, %, y, 2) = 2(x — y + 2)(dx/dt — dy/dt + dz/dt) = dcos(t)(x - y + z)?

\./ i(t, X, Y, 2) = 2(=x + y + z)(—dx/dt + dy/dt + dz/dt) = 4e”(~x + y + z)’,
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the comparison system is defined by
gi(t, Vi, Vo, V3) =4Vi(t, x, y, 2)
g2(t, Vi, Va, V3) =4cos(t)VaAt, x, v, )
gs(t, Vi, Va, V3) = 4e7Vs(t, x, y, 2).

The comparison system is therefore

L, (V) g, (t,1,,1,,1,) 4,
5 @] =r® =26 0= | g, 11.5) | = [4cos(t), |
I, (1) g:(t,1,,1,,1;) 4e7'r,

Since each g; is only a function of r;, the function g is trivially quasimonotone

nondecreasing, and satisfies \./ <g(t, V).
Sin_ce the trivial solution to 1;'(t) = gi(t, r) is clearly unstable, we must choose

k = 1, so the initial condition is 1, =0, and 1,(t; to, 0) = 0. This forces the condition

Vi(t, X, y, z) = 0, which defines the two-dimensional manifold Mg_;y by the condition

(x+y—2) =0 to be the plane x+y=z The solution to the comparison system is
1(t)=0,

1(t) = 1,, exp[4(sin(t) - sin(to))],

r3(t) =1, exp[-4(e” —e™)].

. 3
If € >0, then for & =min{e/(2¢%), &/(2exp(d4e ™)}, 1, +1, <& implies D> 1(t) <e

i=1
for t >t,. Since the conditional equistability condition is satisfied, the trivial solution to

the original system is equistable if the initial point is on the manifold x +y=z [
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The technique of vector Lyapunov functions is a proven technique in stability
analysis in many fields, particularly for large scale dynamical systems and interconnected
systems. See, for example, Michel and Miller (1977), Siljak (1978), Lakshmikantham,

Matrosov, and Sivasundaram (1991), and Vidyasagar (1993).

B. CONE-VALUED VECTOR LYAPUNOV FUNCTIONS

While vector Lyapunov functions provide a great amount of flexibility over scalar
Lyapunov functions, Lakshmikantham (1974) noted that the quasimonotonicity of the
comparison system is not a necessary condition for the system to be stable. In particular,
for a linear system, a matrix can still be a stability matrix (have all eigenvalues with real
part less than zero) without having all the off-diagonal elements nonnegative.

By requiring the vector Lyapunov function to have each V; > 0, we have restricted

it to the cone R%. Lakshmikantham and Leela (1977a) investigated the possibility of

selecting a cone other than R? to overcome this limitation. The following theorems
from Lakshmikantham and Leela (1977b) extend some of the previous results to cones
other than R . The first is the comparison principle corresponding to Theorem A.3
through the cone K.

Theorem B.1. (Lakshmikantham and Leela, 1977b). Let f e C[R. x R", R"] be
quasimonotone nondecreasing in x relative to K for each t € R., and let [to, o), to > 0,
be the largest interval of existence for the maximal solution 1(t; t, Xo) of equation A.1

relative to K. Further, let p € C[R+, R"] and D_p(t) E fit, p(t)) for t >t,. Then
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p(to) % Xo implies p(t) % 1(t; to, Xo) for t>to. O

The quasimonotonicity of f{t, x) in x relative to the cone P does not necessarily
imply the quasimonotonicity of f{t, x) in x relative to the cone Q when
P < Q. However, if P — Q, then the order relations relativé to P do imply the same
order relations relative to Q. We prove these observations in Section D, and from them
comes the following corollary.

Corollary B.2. Let P and Q be two conesin R" such that P < Q. Let the

assumptions of Theorem B.2 hold with K replaced by P. Then p(to) % Xo implies
p(t) § 1(t; to, Xo) for t=to. O

We now state the comparison theorems and stability results for cone-valued vector
Lyapunov functions from Lakshmikantham and Leela (1977b). We begin with the system
of differential equations

- X)) =1, %), x(to) =xo, (A1)
where fe C[R: xD,R"]. If K is a cone in R“, n <m, and the cone-valued vector
Lyapunov function V € C[R: x D, K], we define for (t, x) € R+ x D, the orbital Dini

derivative as D'V(t, x) = limsup (1/h)[V(t + h, x + hf{t, x)) — V(t, x)]. The first result

hos0*
follows.

Theorem B.3. (Lakshmikantham and Leela, 1977b). Assume that V(t, x)
satisfies a local Lipschitz condition in x relativeto K and for (t, x) € R+ x D,

D'V(t, x) < g(t, V(t, x)), (B.1)
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where g € C[R: x K, R"], and g(t, u) is quasimonotone in u with respect to K for
each t € R.. If 1(t; to, u) is the maximal solution of w'(t) = g(t, u), u(0) = u, relative to

K, and x(t; to, Xo) is any solution of equation A.1 such that V(to, o) < uy, then on the
K

common interval of existence
V(t, x(t; to, Xo)) E 1(t; to, Wo). (B.2)
Proof. Let x(t) = x(t; to, Xo) be any solution as above. Set p(t) = V(t, x(t)). For
small h >0, since V(t, x) is locally Lipschitzin x with respect to K| then
p(t +h) —p(t) < Lix(t +h) —x(t) ~ hft, ()] + V(t + b, x(t) + bt x(1))) - V(t, x(1)).
From this and equation B.1 follows the inequality D'p(t) % g(t, p(t)). Applying Theorem

B.1 gives the conclusion B.2. [

Thé following variant of this theorem offers more flexibility in applications, and its
proof follows from Corollary B.2.

Theorem B.4. (Lakshmikantham and Leela, 1977b). Let P and Q be two cones
in R" such that P — Q. Suppose that V € C[R.: x D, Q], V(t, x) satisfies a local

Lipschitz condition in x relative to P, and D"V(t, x) < g(t, V(t,x)) for (t,x) € R, x D,

where g € C[R+ x D, R"] and g(t, u) is quasimonotone nondecreasing in u relative to
P foreach t € R.. If 1(t; to, up) is the maximal solution as in Theorem B.3 relative to P

and x(t; to, Xo) is any solution of equation A.1 such that V(to, Xo) % uy, then

V(t, x(t; to, Xo)) é 1(t; to, Xo) (B.3)
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on the common interval of existence of 1(t; to, uo) and x(t; to, uo). When Q=R1,
relation B.3 implies the componentwise inequalities V(t, x(t; to, Xo)) < 1(t; to, uo). O

We now state the first stability results for cone-valued vector Lyapunov functions.
The first theorem extends the result of Theorem A.7 for equistability. Its proof follows
from that of Theorem A.9 and Theorem B.3.

Theorem B.5. (Lakshmikantham and Leela, 1977b). Let the assumptions of
Theorem B.3 hold. Let ft, 0)=0 and g(t, 0) = 0, and assume that for some |
do € K; and (t,x) € R: xD,

b(|[x]]) < {do, V(t, x)) < a(t, [|x]]), (B.4)

where a € C[R. x [0, p), R:], b € C[[0, p), R+], a(t, 0) = 0, b(0) = 0, a(t, u) and b(u) are
increasing in u, and p = sup{||x||x € D}. Let the trivial solution u=0 of u'(t) = g(t, u)
be ¢o-equistable, that is, given € > 0, to > 0, there exists a & = 8(to, €) > 0 such that
{0, wo) <& implies (o, 1(t; to, Uo)) <& for t>t;. Then the trivial solution x=0 of
equation A.1 is equistable. O

The following theorem again increases our flexibility when employing cone-valued
vector Lyapunov functions. The proof follows from those of Theorems A.Q and B.4.

Theorem B.6. (Lakshmikantham and Leela, 1977b). Let the assumptions of
Theorem B.4 hold, and let f{t, 0) =0 and g(t, 0) = 0. Assume equation B.4 is satisfied

for some ¢o € Q; and that the trivial solution u =0 of u'(t) = g(t, u) is ¢o-equistable,

with ¢o € Q. Then the trivial solution x=0 of equation A.1 is equistable. 0
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If K=R?,then ¢o=[1, 1,..., 1]", and Theorem B.5 reduces to Theorem A.7.

In this case, condition B.4 becomes b(][x]|) < Z Vi(t, x) < a(t, ||x|]). We could again use

i=]
measures other than the component-wise sum of the vector Lyapunov function. In
Theorem B.6,if Pc Q=R], We can remove the requirement for quasimonotonicity if
we select an appropriate cone P depending on the nature of g(t, u) as shown in the
following example from Lakshmikantham and Leela (1977b).
Example B.7. Consider the system
u'(t) = apuy + apup = gy(t, uy, uy), uy(te) = uoy, (B.5a)
/(1) = azu; + axpu; = gy(t, ug, uz), ux(ty) = uos. (B.5b)
If Q=R?,and a,; and a;, are not nonnegative, then the function g(t, u) isnot
quasimonotone nondecreasing in u = (u;, u;) relative to Q. Hence, the differential
mequalities
D*Vi(t, x) < gi(t, Vi(t, x), Va(t, X)), (B.6a)
D'Va(t, x) < gaft, Vi(t, x), Va(t, X)) (B.6b)
do not yield the componentwise estimates of V(t, x(t)) in terms of the solution of
equation B.5. However, if there exist two numbers o and 3 suchthat 0 <fB <a and
o’ay + dag; > oay; + ap, (B.7a)
B’az + Bax, > Bay; + ap, (B.7b)
then these conditions hold with no restriction on the nonnegativity of a;; and a);. Let

the cone P Q=R? be defined by P = {u € R?|Bu, <u, < ou,}. The boundaries for

this cone are au; =u; and Bu, =u;. On the first boundary, let ¢ = (~1/a, 1) so
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{(-Va, 1), (ug, w/o)) =0, and {(—1/ct, 1), (a;1; + azwy/aL, azmu + axui/a)) = 0 for all
u # 0. This reduces to condition B.7a, and we similarly obtain condition B.7b. Thus, if
the inequalities B.6 are relative to P, we obtain component-wise estimates on V as

Vi(t, x(t)) < 1i(t; to, V(to, Xo0)) (B.38)
by Theorem B.4. If ajy, az; 2 0, then equation B.8 is the one we would obtain through the
standard method of vector Lyapunov functions. O |

While it appears to be a nontrivial exef,cise to construct an appropriate cone for a
system of differential equations, this method still carries much merit as it provides a further
increase in our flexibility to determine the stability of equilibria.

These are the most basic results from the theory of cone-valued vector Lyapunov
functions we require to motivate the problem of finding a nonnegative cone with respect
to which a linear differential operator on R" is quasimonotone nondecreasing. Further
directions in the theory of vector Lyapunov functions ha{/e been explored recently. In
particular, using higher derivatives of vector Lyapunov functions, Koksal and
Lakshmikantham (1996) showed how to find a particular cone with respect to which a
given comparison system (resulting from taking higher derivatives of a decrescent
Lyapunov function) is quasimonotone. |

Furthermore, there has been much research on nonlinear comparison systems. See, -
for example, Hatvani (1984), Deimling and Lakshmikantham (1990), Lakshmikantham,
Leela, and Ram Mohan Rao (1991), and Lakshmikantham and Papageorgiou (1994).
However, we focus on finding cones for vector Lyapunov functions when the comparison

system is linear.

35




C. THE QUASIMONOTONICITY OF LINEAR DIFFERENTIAL SYSTEMS

The problem of finding a cone in R" with respect to which a given linear operator
is quasimonotone nondecreasing (or essentially nonnegative) and many related problems
have been addressed in various forms in the literature in recent years. For example,
Vandergraft (1968) following Birkoff (1967) gave sufficient conditions for such a cone to
exist without further restrictions on the cone K. However, Heikkili first addressed this
problem for the application of vector Lyapunov functions, with the requirement that the
cone be proper, simplicial, and nonnegative. He stated this to be sufficient for the
application of vector Lyapunov functions, and in the next section, we justify this claim. In
this section, we summarize Heikkila’s results.

Consider a linear mapping A € R™ and a cone K generated by n vectors b; in
R" such that

K= {wb; +...+wbiw;>0}. (C.1
For C.1 to define a proper, simplicial cone in R", it is necessary and sufficient that the b;
be linearly independent. The first result gives necessary and sufficient conditions for a
linear operator to be quasimonotone with respect to a cone in R".

Theorem C.1. (Heikkild, 1980). A linear mapping A: R" — R" is
quasimonotone nondecreasing relative to the cone generated by a basis {b,,..., b,} of
R" if and only if the matrix of A relative to this basis has all off-diagonal elements
nonnegative.

Proof. Let A =[a;] and C=[c;] be the n x n matrices of A relative to the

standard basis of R" and the basis {by, ..., b,} respectively. Then C =B 'AB, where
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B € R™ has b; asitsjth column. Let ¢ be the ith row of B™, so

<¢i’ bJ> = Sij, (CZ)
and
(i, Ab}) = c;;. (C.3)

Equations C.2 and C.3 imply that ¢; e K, foreach i=1,...,n

Assume c; 20 for i#j, andlet u € 0K be given. Thenif u= D" wb;, at least

=1

one coefficient w; must be zero. Then {(¢;, u) = Z widi, b;) =0 and

=

n n

(i, Awy=>" wildi, Ab)= D" wjc; 20 from equations C.2 and C.3. Thus, the

=1 =1
condition c; >0 for i= jimplies the quasimonotonicity of A relative to K.

Conversely, let at least one off-diagonal element of C, say c;j, is negative. Then
by equation C.3, {¢;, Ab;) <0. Since the mapping u — {¢;, Au) is continuous, there
existsa 6> 0 such that |ju—1b;/| <3 implies

{¢;, Au) < 0. (C.4)

n

In particular, equation C.4 holds for u € K given by u = Z wiby, with w; =0,

k=1
w; =1, and for k # 1, j, wi = 6/(n|[bi]|). Since all the coefficients w;, except w;, are
positive, then for any b € K for which (b, u) =0, it follows that (b, bxy =0 for all

k #1. Thus, b must be of the form b= a; for a > 0, so by equation C.4,
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(b, Au) = a{¢;, Au) < 0. This shows A is not quasimonotone nondecreasing relative to
K unless ¢; >0 for i#j, completing the proof. O

Salzmann (1972) proved the same result for nonnegative matrices, and he
presented it in terms of positive operators on simplicial cones. Furthermore, in his
discussion of matrices with invariant cones, Vandergraft (1968) proved a similar result. An
immediate consequence is the following.

Corollary C.2. (Heikkild, 1980). If a linear mapping A: R" — R" has n
linearly independent eigenvectors by, . . .b,, then A is quasimonotone nondecreasing
relative to the cone generated by these eigenvectors.

Proof. In this case, the matrix of A relativeto {bs,..., b,} is diagonal. O

We can also express a necessary condition for monotonicity in terms of the
eigenvectors of A. This result follows from the result from Perron (1907) and Frobenius
(1912) on the theory of nonnegative matrices, which states that a nonnegative matrix has a
nonnegative eigenvector corresponding to a real eigenvalue of greatest modulus (see
Theorem I1.B.2).

Corollary C.3. (Heikkila, 1980). If a linear mapping A: R"— R" is
quasimonotone nondecreasing relative to a cone of type C.1, then A has a non-zero
eigenvector in this cone, and hence a real eigenvalue.

Proof. If A;=B™'AB is quasimonotone nondecreasing where B = [b,, . . ., by],
choose a positive number r so large that C = A, + 1l is nonnegative. Then C has a
nonnegative eigenvector x; 2 0, so A, (and hence A) has an eigenvector

y1=Bx; e K(B). O
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We now consider linear differential systems. By the quasimonotonicity of the
linear system
u'(t)=A(tu, t20, ' (C.5)
relative to a cone K we mean that for each t > 0 the linear mapping A(t) is
quasimonotone nondecreasing relative to K. The next result for cones contained in R}
follows from Corollaries C.2 and C.3.
Corollary C.4. (Heikkild, 1980). For the quasimonotonicity of the system C.5

relative to some cone in R it is necessary that for each t >0 at least one eigenvector
of A(t) belongsto R, and sufficient that A(t) has n linearly independent eigenvectors
in R%, which do not depend on t. O

Given a nonsingular matrix B € R™, the mapping u = Bv transforms equation

C.5 into the equivalent form

v(t)=B'A(t)Bv, t>0. (C.6)
But B'A(t)B is the matrix of the linear mapping A(t) in the basis of R" formed by the
column vectors of B. Moreover, if B is nonnegative, these vectors belong to R .
Hence, the next result follows from Theorem C.1.

Theorem C.5. (Heikkild, 1980). There exists.a cone K in R} generated by n
linearly independent vectors, relative to which the system C.5 is quasimonotone
nondecreasing if and only if there exists a nonsingular matrix B such that the off-diagonal
elements of the coefficient matrix of the system C.6 are nonnegative. Moreover, the

column vectors of B generate K. [
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This special case of considering conesin R lets us apply Theorem B.6 when the

vector Lyapunov function satisfies a differential equality.

D. STABILITY THROUGH LINEAR COMPARISON SYSTEMS

The results of Heikkild (1980) presented in Section C address the problem of
finding a cone with respect to which a linear comparison system is quasimonotone, and
provide a necessary condition and a sufficient condition for such a cone to exist. Koksal
and Lakshmikantham (1996) constructed cones for comparison systems generated by
taking derivatives of Lyapunov functions, and Kéksal and Fausett (1995) extended these
results using generalized eigenvectors.

Heikkild (1980) states (without proof) that for stability results it is sufficient to
consider nonnegative cones. This section gives our proof of this resxlit, and shows it is
sufficient to consider square, linear comparison systems.

We wish to determine the stability properties of the origin as a solution to

x'(t) =1t x) (A1)
where f e C[R: x R™ - R"™] and f{t, 0)=0. To do this we seek a vector Lyapunov
function V(t, x) € C[R. x R™, K] which is locally Lipschitz in x with respect to a cone

K < R", and which satisfies the differential inequality

Qfmw (D.1)

where V is the orbital derivative of V along trajectories x(t). If g(t, u) is

quasimonotone nondecreasing with respect to K the stability of the trivial solution of
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w'(t) = g(t, w) (D.2)
may be used to determine the stability of the origin x(t) =0 in equation A.1. We require

certain conditions on the Lyapunov function V for this result to hold, for example,

n

b < D) Vil <a(xl)) (D.3)

i=1
where a and b are as in Theorem B.5.

We let the comparison system A.3 be a square, linear system, or g(t, u) = A(t)u
where AI: R:xR">R%orforall t, AeR™ Let Ve R? sothe quasimonotonicity
of A(t) implies its off-diagonal elements are nonnegative, and the inequality D.1 is
component-wise majorization (otherwise we can change bases so Ve R?Y).

If A(t) is a stability matrix, but does not possess the required quasimonotonicity
properties,' we seek a cone K c R" other than R’ for which inequality D.1 holds,

relative to which A(t) is quasimonotone nondecreasing, and which contains V(t, x)
while maintaining its locally Lipschitz property. The following lemma discusses the effect
of a linear transformation on an inequality.

Lemma D.1. If x < y, then for a nonsingular matrix B € R™", Bx K%g ) By,
RY

where K(B) c R" is the cone generated by the columns of B.

Proof. Since Bx < By <> By-Bx € K(B) and (y-x) € R}, then from the

K(B)

n

linearity of B, B(y —x) € K(B)={u= ) objo >0, b;is a columm of B}. Letting

i=1

o = (¥ —Xx)i = 0 completes the proof. [
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~ We can transform a differential system v'(t) = Av, with a nonsingular matrix B,
where y =Bv, so y'(t)=BAB™'y. Such a transformation is called a Lyapunov
Transformation and the stability of the origin in one system implies the stability of the
origin in the other. In this case, we say the systems are equivalent in the sense of
Lyapunov (see Gantmacher, 1959).

We now show that a simple coordinate transformation cannot be used to construct
a cone which satisfies the hypothesis of Theorem B.6 when the original system does not
possess the required quasimonotonicity property.

Proposition D.2. Assume a vector Lyapunov function satisfies the inequality

V <A@V, (D.4)
R?
but that A(t) is not quasimonotone nondecreasing with respect to R?. Then there does

not exist a Lyapunov transformation Y =B™'V for which Y < C(t)Y and C(t) is
K(B™)

quasimonotone nondecreasing with respect to K(B™).
Proof. If such a transformation existed, then with C(t) = B™'A(t)B, multiplying

inequality D.4 by B™' and applying Lemma D.1 gives

Y =BV < BA®MV=B"BCHBV = COHY.

K(B™
However, in order that C(t) be quasimonotone nondecreasing with respect to K(B™), by
Theorem C.1 it is necessary and sufficient that BC(t)B™' have its off-diagonal elements
nonnegative. But BC(t)B™' = A(t), which, by assumption, is not quasimonotone

nondecreasing with respect to R}. O
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Hence, the problem is to find an appropriate cone with respect to which the
function A(t) is quasimonotone nondecreasing, and for which the differential inequality
D.1 and all other required properties are preserved. The following case, where the
inequality D.1 is really an equality, is frequently found in applications.

If the orbital derivative of a Vector Lyapunov function V € R} satisfies V =AV

where A is a stability matrix, then the following results give conditions under which the
hypotheses of Theorem B.6 are satisfied, and the solution x(t) =0 to equation A.1isa

stable equilibrium.
First, it is evident that if V = AV then BV < BAV for all nonsingular
transformations B and all cones K. We also need the following result.

Lemma D.3. If V(t,x) € R islocally Lipschitz in x with respect to R%, then
for any nonsingular matrix B € R™, Y =BV islocally Lipschitzin x with respect to the
cone K(B).

Proof. Evidently, V(t, x) € R} implies Y =BV € K(B). Since V islocally
Lipschitz with respect to R, this implies there exists an L € R} such that
Lijx — yi| = (V(t, x) - V(t, y)) € R®. Letting L =BL e K(B) yields

Lix~yll - (¥(t, x) - Y(t, ) € K(B). O
We also require the result that the Lipschitz property is preserved through cone
containment.

Lemma D.4. If V(t, x) € P is locally Lipschitzin x with respect to the cone
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PcR’, and Pc Q where Q c R" is a cone, then V(t, x) is locally Lipschitzin x with
respect to Q.

Proof. If V(t, x) is locally Lipschitzin x with respect to P implies there exists
an L € P such that Ljjx —y|| — (V(t, x) — V(t,y)) € P, then L € Q and
Lilx =yl = (V(t, x) - V(t, ¥)) € Q. O

The following result appears as a remark in Lakshmikantham and Leela (1977).

Lemma D.5. If P and Q are conesin R" with P < Q, then x § y implies

x<vy
Qy

Proof.x%y:y——xeP:y—er :bxgy. O

We now demonstrate the well-known result that if P and Q are conesin R" with

P c Q, that the quasimonotonicity of a mapping A € R"™ with respect to Q does not

imply the quasimonotonicity of A with respectto P. Let P=R? andlet Q be the

0 0 1
1:l,hence Pc Q. Let A=[ :I,

cone generated by the columns of B = [ 4 6

-3 1
which is not quasimonotone nondecreasing with respect to P. Since B'AB = [ s 3] ,

then by Theorem C.1 A is quasimonotone nondecreasing with respect to Q.

Similarly, if P — Q are conesin R", the quasimonotonicity of a mapping with

respe;ct to P does not imply the quasimonotonicity of the mapping with respect to Q.

-2 2
Letting A = [ ! 3} and choosing P and Q as above, A is quasimonotone
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2
nondecreasing with respect to P, but BAB = [ 9] , 50 by Theorem C.1, A isnot

quasimonotone nondecreasing with respect to Q.
Following Heikkild (1980) and Koksal and Fausett (1995) we present the .
following result.

Proposition D.6. Suppose a Vector Lyapunov function V(t, x) € R} satisfies

\./ = A(t)V where A(t) is a stability matrix which is not quasimonotone nondecreasing
with respect to R%. Ifthe generalized left eigenvectors of A(t) are all containedin R7,
there exists a transformation Y =BV and a cone K=R" such that the hypotheses of

Theorem B.6 are satisfied.

Proof. The matrix A has as its Jordan canonical form J = B™'AB, where the rows
of B™' are the generalized left eigenvectors of A and the columns of B are the
generalized eigenvectors of A (see Horn and Johnson, 1991). By assumption, Bl isa

nonnegative matrix, so K(B™) c R®. Hence, the transformation Y = B7'V yields the

differential equation Y =JY. Then Y € K(B™) is locally Lipschitzin x with respect to

K(B™) by Lemma D.4, and with respect to R® by Lemma D.5. Since J is

quasimonotone nondecreasing with respect to R}, and Y < JY,weuse Y asthe
R

vector Lyapunov function with K= R?, satisfying the conditions of Theorem B.7. The

only remaining detail is the measure used to bound Y, so the following remark completes

the proof. O
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Remark D.7. Since P Q implies Q" = P’, we cannot, in general, find a

dA) e Q; =R2\{0} such that ((f) ,B'V) preserves the original measure

{bo, V) = Z V; with ¢o=[1,..., 1]°. This is because d3 = B¢y is not generally in

i=1
Q, =R \{0}, since the nonnegativity of B~ does not imply the nonnegativity of B.

However, had we used the equivalent measure max |V;| = max V;, then using as the new
1 1
measure max |Yj|, since each Y; is a positive linear combination of the V;, preserves the
1

result of Theorem B.6 by scaling a and b appropriately in equation B.4. [

While we used the Jordan form to achieve quasimonotonicity with respectto R?,
this result may be extended to any case where S = B™'AB, S has nonnegative off-diagonal
elements, and the columns of B~ are contained in R". This follows from Theorem C.5
of Heikkild (1980), who further shows that this construction is always possible in the case
n=2 'if A has one eigenvector in the first quadrant and at most one of a;; and a,; is
negative (in this case it is necessary and sufficient that both eigenvectors be nonnegative).
This is an application of Corollary C.5 to square systems with differential equalities.

In the case where we do not begin with an equality in equation D. 1, this

construction is generally not possible. Instead, given V < A(t)V, we now must find a
R?

cone with respect to which A is quasimonotone nondecreasing, on which V is defined
and locally Lipschitzin x, and on which the inequality D.1 still holds. The result of

Koksal and Iakshmikantham (1996) is a special case of this.
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We define the following four properties for a linear comparison system for a vector
Lyapunov function V and a cone K.
(P1) V is defined on K;

(P2) V is locally Lipschitz with respect to K
(P3) V < A@®V; and

(P4) A(t) is quasimonotone nondecreasing with respect to K.

If we find a cone K =P for which properties (P1) through (P3) hold, then in
order to find a cone K =Q for which properties (P1) through (P4) hold it is necessary
that P — Q. This is because if a cone Q containing P with respect to which A(t) is
quasimonotone nondecreasing exists, then by Lemmas D.4 and D..S, properties (P1)
through (P3) hold for Q, and we can apply Theorem B.6.

This is essentially what was done in Proposition D.2 where the vector Lyapunov

function Y € K(B) c R} satisfied Y Kg ) JY, and J was quasimonotone

nondecreasing with respect to R2. Letting K(B)=P and R’ = Q satisfies properties
(P1) through (P4).

We first state an obvious result for finding such a cone, which may be useful in
applications. The proof follows from the above remarks that P < Q.

Proposition D.8. If V e P satisfies properties (P1) through (P3) for K=P, and
ifthe cone K(B) generated by the generalized eigenvectors of A contains P, then

properties (P1) through (P4) hold for K(B). O
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This generalizes to any transformation S =B™'AB where S has nonnegative off-
diagonal elements and K(B) contains P. Following Heikkili (1980) we next show that
to find a cone containing R with respect to which A is quasimonotone nondecreasing,
it is necessary and sufficient to find a cone contained in R® with respect to which A" is
quasimonotone nondecreasing. We use Lemma II.A.3 which states that K(B)c R if

and only if K(B™") > RI. Since it is presumably easier to find a cone contained in R?

(the matrix of its generators is nonnegative) than one containing R" (as we require) this
proposition is useful in applications.

Proposition D.9. The matrix A is quasimonotone nondecreasing with respect to
acone K(B)2R" ifand onlyif A" is quasimonotone nondecreasing with respect to a
cone K(B")cR".

Proof. Let A" be quasimonotone nondecreasing with respect to a cone
K(B") cR®. Then by Theorem C.1, C = (B")"A'B” has all of its off-diagonal elements
nonnegative, as does C' =BAB™. Since K(B") c R implies K(B)c R:, then
K(B_"l) OR? and A is quasimonotone nondecreasing with respect to K(B™).

Reversing the argument completes the proof. O
Hence we can apply Corollary C.4 and Theorem C.5 of Heikkild (1980) to the

search for an appropriate cone, as the generalized eigenvectors of A”, or the generalized
left eigenvectors of A, being contained in R 1is a sufficient condition for the existence

of a cone for which property (P4) holds.
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Because it is the case most frequently encountered in applications, we have
assumed P =R to establish properties (P1) through (P4). Evidently, if Pc R the
above results still hold; however, if P >R’ then the construction is not as simple.

Since for two cones P and Q, P < Q implies Q ¢ P, thenif Pz R?, instead
of seeking a set of vectors b; € R} such that (B")'A™B” has nonnegative off-diagonal

elements, where the b; are the columns of B”, we must find vectors b; e‘ P’ to construct
an appropriate cone. We therefore conclude the discussion of square linear comparison
systems with the following extension of Proposition D.9. =

Theorem D.10. Given a vector Lyapunov function V and a cone P c R™ for
which properties (P1) through (P3) hold, in order to find a cone Q 2 P with respect to
which the matrix A is quasimonotone nondecreasing it is necessary and sufficient to find
m independent vectors b; € P* such that if BT =1[b; ... by], then C=(B")'A'™B” has
nonnegative off-diagonal elements.

Proof. If b; € P* are such that C=(B")"A™B" has nonnegative off-diagonal
elements, then so does C' =BAB™, and A is quasimonotone nondecreasing with respect
to K(B™) by Theorem C.1. Since K(B™) =K(B")", and since K(B")c P" implies
K(B") o P, then K(B™") 2 P. Reversing the argument completes the proof. O

Proposition D.9, where P =R is a special case of the above result, since

R® =R"". Finding an invertible matrix whose columns are contained in P* is perhaps

less difficult than finding one whose columns generate a cone containing P. The next

result follows from Corollaries C.3 and C.4 of Heikkild (1980).
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Corollary D.11. For property (P4) to hold relative to some cone Q o P, where P,
Q, V, and A(t) are as above, it is necessary that at least one eigenvector of A'(t) belong
to P* and sufficient that A'(t) has n eigenvectorsin P", which do not dependon t. O

To show quasimonotonicity with respect to an appropriate cone, we only show
such a cone exists. In an equivalent approach we could use the cone to transform the
vector Lyapunov function and the comparison system as we did in Proposition D.2. This
technique now works, since the cone used to make the transformation is contained in our
original cone, and the inequality is preserved. The following corollary is an extension of
Theorem 2.8.3 of Lakshmikantham, Matrosov, and Sivasundaram (1991).

Corollary D.12. If a vector Lyapunov function V exists such that properties
(P1) through (P3) hold for some cone P, and if a matrix B exists as in Theorem D. 10,
then the vector Lyapunov function Y = (B")'V gives the same conclusion about the
stability of the trivial solution to Equation A.1. O

This approach has the advantage of directly yielding the stable manifold of the
origin in the case of conditional stability, but in the usual case it involves an additional
computational step. Since the ideas are equivalent, we continue the approach of. showing
such a cone exists.

We continue our analysis of linear comparison systems considering the case where
the system is rectangular instead of square. Let a nonnegative vector Lyapunov function
V(t, x) be such that

V: R.xR" > R®, (D.5)

whose orbital derivative satisfies inequality D.4, V< A(t)V. Let A(t) € R™" with
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A A
A= , (D.6)

0

O

where A e R”?, A € R™, 0 isa qxp zeromatrix, and 0 isa qx g zero matrix,

with p+q=n.

Such a comparison system is possible when the orbital derivative satisfies V; <0

for p <j<n. Ifwe have equality in any of these components, or if \./ ;=0 for some j,
this is a conserved quantity for our original system A.1, and the theory of conservative
systems to applies to our analysis. While it is necessary that a conserved quantity be non-
constant on open sets, a component of a non-trivial vector Lyapunov function certainly
satisfies this requirement, so this more powerful theory applies to the problem. Hence, we

assume the orbital derivative satisfies inequalities in its last q components.

This rectangular p x n system can be treated as a square system D.4 where A is
given by equation D.6. Since we address such systems in Chapter IV, where we give a
complete theory for reducible, square matrices, there is no need to consider the smaller,

rectangular system.

We similarly dismiss the case where the matrix A in equation D.5 is of the form

2>
[en )]

>
ol
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where A € R*® and the last q columns of A contain zeroes. A is not a stability
matrix since o(A) = o(A ) U {0y, ...,0q}, and A may not possess quasimonotonicity

properties, even if A does. However, letting Y;=V; for 1 <i<p yields the square

system Y < AY, to which we may apply the theory for square comparison systems,
regardless of the nature of A . Hence, we gain nothing by keeping the last q
components of V, so we may discard them, leaving the imbedded p x p ;equare system.

We have now established the setting for the problem of finding a cone with respect
to which a linear comparison system is quasimonotone nondecreasing. It is sufficient to
consider square linear systems, and considering the transpose of the comparison system, it
is sufficient to find a cone contained in the nonnegative orthant. The next two chapters

present our solution to this problem.
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IV. THE QUASIMONOTONICITY OF A SQUARE, LINEAR OPERATOR
WITH RESPECT TO A NONNEGATIVE CONE: THE REAL SPECTRUM

For a matrix A € R™ we address the problem “when is A quasimonotone
nondecreasing with respect to a cone in R % ?” (or equivalently, when is it essentially

nonnegative under a nonnegative change of basis?). In Chapter Il we motivated this
question with the application of determining stability in dynamical systems via the
technique of cone-valued vector Lyapunov ﬁﬁxctions, and in Chapter VI we present
further applications of this problem.

Using Perron-Frobenius theory, Heikkild (1980) showed a necessary condition (the
matrix A has a nonnegative first eigenvector) and a sufficient condition (the matrix A
has all nonnegative eigenvectors) for such a cone to exist (see Corollary III.C.2) where the
first eigenvector is the nonnegative eigenvector x; associated with the (real) eigenvalue
A of greatest real part.

The next two chapters present our solution to this problem. Using constructive
techniques, we bring together the necessary and sufficient conditions Heikkilid gave for
n > 2, and we address the complex spectrum for the first time in this setting. This chapter
addresses the case where the spectrum of A isreal or 6(A) < R, and Chapter V

addresses the general spectrum.

A. MATRICES WITH A POSITIVE FIRST EIGENVECTOR

We begin with the case where the first eigenvector is positive, or x; > 0. Weuse a

sequence of changes of basis Aums1 =B _ AnBn with K(Bn) c R?, which ensures the
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change of basis is always nonnegative. The following lemma is the key to the

construction.

Lemma A.1. Let B=[x, b, ..., b,] € R™ be nonsingular with x € (R?)° and

T
1

T

B'=|"%]|
¢:Z
Then there exists a unit basis vector e, € R" such that the matrix
e
bt 2| (401
(0!
has a nonnegative mverse D € R1™, where (%) indicates an appropriate choice of sign
for each ¢;.
Proof. Since x € (R})° and {(¢;, x)=0 for i=2,.. ., n, then +¢; ¢ R?.
Hence, each ¢; has components of both signs. Since each hyperplane ¢ contains
x € (R7})° then each of these hyperplanes intersects at least (n — 1) of the coordinate
hyperplanes ejl in R} . (This is evident from the mixed signsin ¢; for i=2,... n.)
Therefore, there are (n — 1) hyperplanes which each intersect at least (n — 1) of the
(¢); =e; NR}. By the pigeonhole principle, at least one (e;); intersects each ¢ .
Let this unit basis vector be ey. Since we require (¢;, d;) =1 where d; is a column of D

for i=2,...,n,toensure d; € (ex); we select the appropriate sign for each ¢;.
: PP

Therefore, D™’ has as its inverse D =[d,, d,, . . ., d,], which is nonnegative. [
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We note that the kth row of D is e], and that d; = x/X.

We now construct a cone in R} with respect to which a matrix A is

quasimonotone nondecreasing. We begin with the case where A is diagonalizable, and
the first eigenvalue A, is simple. In this case we can construct the matrix
o
B = d):; (A.1a)
o
where the d)f are left eigenvectors of A and K((B™')')2R” by Lemma A.1. Then

B =[xy, by, ..., b,] is nonnegative, and

7‘\’1 ﬁn aln
» 0
A,=B7AB= N : (A.2)
0 A

Ifany 4,; <0 for j=2,...,n, then we use another change of basis of the form

1 &, - &,
1 0
B, = . , (A.1b)
0 1
where the &; are all nonnegative, and
Aoay e ay,
A 0
A,=BAB, = 2 (A3)
0 A
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Since aj; = 4+ Ej(A1 — Aj), and A, > A;, we can make a;; nomnegative, so A, is
quasimonotone nondecreasing.

In the case where A isnot a simple eigenvalue, this construction still works,
because for A;=1,, 4,;=0 in equation A.2. To show this, since 4;=e Ab; and b; is
in the eigenspace of A;=2A;